
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015 pp 27 – 32
Krishi Sanskriti Publications
http://www.krishisanskriti.org/ACSIT.html

A Review of Clone Detection in UML Models

Balwinder Kaur1, Er. Harpreet Kaur2

1M.Tech Scholar, University College of Engineering, Punjabi University,

Patiala, Punjab, India.
1balwinder0909@gmail.com

2Assistant Professor, University College of Engineering, Punjabi University,
Patiala, Punjab. India.

2khasria.harpreet@gmail.com

Abstract: Model Driven Engineering has become standard and
important framework in software research field. Unified Modeling
Language (UML) domain models are conceptual models which are
used to design and develop software in software development life
cycle. Models contain design level similarities, these are called
model clones. Model clones are harmful for software maintenance as
code clones and also lead to bad design. So number of clones need to
be detected from UML domain models. Awareness of clones helps in
reusable mechanism. Many techniques have been proposed for code
clone detection but a few work has been done on model clone
detection. In this paper review has been provided related to various
techniques for detection of clones in UML models. Tree comparison
technique is used to find similarity in two fragments of a model. Tree
is less false positive because of minimum non-relevant matches.
Suffix array technique is used to detect clones in class diagrams.
Suffix array consumes minimum memory. NiCad Clone detector tool
is a scalable and flexible tool to detect type-3 near-miss clones in
behavioural models. This paper provides comparative features of
these above different techniques.

Keywords: Model clones, UML models, Code clones, Model clone
detection.

1. INTRODUCTION

Copying existing code and pasting it with or without any
change into other sections of programme is a popular process
in software development. The copied code is called a software
clone and process is called software cloning [14]. Model
clones are the clones which are detected at the design phase.
Code clones are the clones which are detected at the
implementation phase. Clones increases redundancy,
probability of bugs and maintenance cost.

Model Driven Development defines domain models
also called conceptual models which mainly focuses on
modeling rather than computer programming. There are
various UML models such as class diagram, use case diagram,
activity diagram, state chart diagram, sequence diagram etc
[2]. The UML i.e. Unified Modeling Language gives us a
standard way to define system’s view including many
conceptual details such as business processes. Because of

large adaptability of it by software developer, it is necessary to
understand the importance of modeling. Use of UML makes
modeling more efficient and effective. It is very important to
understand the definition of model clones and to derive a
formal framework for model clones. Many techniques have
been applied to detect code clones but a few techniques have
been proposed to detect model clones[3], [7]. In this paper
techniques for clone detection have been discussed.

1.1. Motivation
1.1.1 Higher level of abstractions and a number of modeling
languages has made modeling a key industry practice in
different domains and different phases of software
development life cycle.
1.1.2 Models attain substantial size [10] thereby increasing
complexity and higher rate of duplications.
1.1.3 There is a dearth of studies suggesting techniques for
detection of clones in UML models.

2. Model Cloning

2.1. Model Clone
In code based development source code clone detection is a
big problem, the same problem also occur in model based
development for duplicated parts of models. There is a
difference between programming language code and models
so algorithms and notations used for code clone detection are
difficult to implement to model clone detection [2], [12].
A model fragment is a set of model elements that is closed
under some closure property of similarity. Model Clone is a
pair of model fragments that contains high degree of
similarity.

2.2. Types of model clones
There are four types of model clones.
2.2.1. Type 1- Exact Model Clone: In exact model clone,
model fragments that are identical except from internal
identifiers and layouts.

Balwinder Kaur, Er. Harpreet Kaur

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015

28

2.2.2. Type 2- Modified Model Clone: In Modified model
clone, model fragments with changes to the attribute names
and element names.

2.2.3 Type 3- Rename Model Clone: In rename model clone,
model fragments with changes such as addition or removal of
parts.

2.2.4. Type 4- Semantic Model Clone: In semantic model
clone, model fragments that are due to model part copying or
language constraints etc [3], [7].

 Figure 1. Clones in class diagrams

2.3. Reasons of model clones

2.3.1. Model clones through copy/paste: Editing commands
copy/paste is used for copying a diagram element so that
create a new copy of model element. Model clones are created
by copy/paste to reuse the model elements. This is the fast and
immediate way of adapting the change by software designers
[7].

2.3.2. Model clones through language loopholes: Due to
some language limitations, parts of models are repeated by
mistake [14].

2.3.3. Complexity of the system: Copying the existing model
elements is used, because there is difficulty in understanding
the large systems [7].
2.3.4. Time limits assigned to software designers: One of
the major causes of cloning in the system is the time frame
allowed to its software designers. In many cases, the software
designers are assigned a specific time limit to finish a certain
project or part of it. Due to this time limit, software designers
look for an easy way of solving the problems at hand and
consequently look for existing design. They just copy and
paste the exiting one and adapt to their current needs [14].
2.3.5. Wrong method of measuring software designer’s
productivity: Sometimes the productivity of a software
designer is measured by number of model elements produces
per hour. In such circumstances, the software designer focus is
to increase the no. of model elements of the system and hence
tries to reuse the same model element again and again by
copying and pasting instead of following a design strategy.
2.3.6. Software designer’s lack of knowledge in a problem
domain: Sometimes the designer is not familiar to the
problem domain at hand and hence looks for existing solutions
of similar problems. Once such a solution is found, the
designer just adapts the existing solution to his/her needs.
Because of the lack of knowledge, it is also difficult for
designer to make a new solution even after finding a similar
existing solution and thus reusing the existing one gets higher
priority than making a new one [14].
2.3.7 Model clones by intention of programmer: Some
clones are created with purpose by the programmers to create
the parts of models [7].

2.4. Code clones versus Model clones

2.4.1. Language/Tool Integration: Program is a text file.
Programming languages are independent of a development
environment, a Java program created with one IDE can easily
be transferred to another. Models, on the other hand, are
tightly integrated with some tool which is used to create the
models.
2.4.2. Structure: The code of a system can be represented as a
directory tree of text files, each of which is considered as a
long string of characters or tokens. Models, on the other hand,
have a graph structure stored in a repository.
2.4.3 Identification: In source code, elements like types,
procedures and so on are identified by their names. Textual
representation is used to identify code fragments. Code clones
are identical because copying a text fragments retains their
identity. In many modeling environments, on the other hand,
model elements have internal identifiers. Model clones are
equal but not identical because these identifiers are understood
as globally unique, a copy of a model element will
consistently change the identifiers in the duplicate.
2.4.4. Syntactic representation: Source code is represented
as a string of characters. There are white spaces and
indentations but source code remains sequential text. Models,
on the other hand, have a dual structure. Internally, they are a

A Review of Clone Detection in UML Models 29

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015

set of linked meta model class instances. Externally, they are a
set of diagrams where secondary notation and layout play a
important role in understanding and using diagrams as used in
visual modeling languages [7].

3. LITERATURE REVIEW
Various techniques has been provided till now but each with
its pros and cons. The following table 1 gives overview of
available techniques.

Table 1. Literature of different available techniques

S.
No.

Year Author Title Work done Results Future scope

 1.

2014 S.
mythili,
Dr. S.
Sarala

Efficient weight
assignment
method for
clone detection
in sate flow
diagrams [1]

Clone detection in state flow
diagrams takes query model as
input. The weight identification
of the query model is done. The
weight is compared with the
weights of all the models
available in the database. If both
the weight matches then the
whole model is said to be cloned.

Clone is displayed
when weight of
the query model
matches with one
of the weight in
the database.

This process will
be implemented
to check for
clones in various
industrial
projects for
evaluation. It can
also be extended
to detect clones
in process
oriented models.

2.

2014 Harjot
Kaur,
Manpre
et Kaur

Detecting
clones in class
diagrams using
suffix array [2]

Class diagrams are encoded as
XML files. Tokens are extracted
and matched using suffix array
technique. This approach is
based on finding similarities in
tokens known as clones.

Class diagrams
contain redundant
elements. Similar
attributes or
operations present
in two different
classes are known
as clones.

This technique
will be extended
for clone
detection in state
chart and activity
diagrams.

3.

2013 Antony.
E.P.,
Alafi.M.
H.,
Cordy.J.
R.

An approach to
clone detection
in behavioural
models [4]

An approach for reverse
engineered UML behavioural
models to detect near-miss
interaction clones consists of
four steps: 1) Behavioural
models are represented as XMI
file. 2) TXL is used to do
transformation/
contextualization.
3)Normalization is performed. 4)
NiCad is used to do clone
detection analysis.

This approach has
detected type 3-
1(exact near-miss)
conversation
clones. The result,
obtained from
clone detector are
presented in
NiCad’s default
XML and HTML
text formats.

Work will be
planned to trace
the clones back
to the original
diagrams and
visualize them in
the model.

4.

2012 Rattan.
D,
Bhatia.
R,
Singh.M

Model clone
detection based
on tree
comparison [6]

To find similarity in two
fragments of a model, tree
comparison is used. The basic
steps are: 1) Any modeling tool
is used to create the model. 2)
The model of class diagram is
exported to XMI file format. 3)
XMI file is stored in the tree
form using DOM API’s and
XML parsing. 4) Comparison of
subtrees are done and duplicity is
reported in the form of model
clone.

Anecdotal
evidence suggests
that clones in
models hamper
maintenance. A
technique is
presented to detect
clones in class
diagrams encoded
as XMI file. The
similarity is
reported as output.

Work will be
extended to the
prototypical
implementation
to display the
clone results
with percentage
of similarity. The
present
technique can be
extended to
Activity
diagrams.

Balwinder Kaur, Er. Harpreet Kaur

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015

30

S.
No.

Year Author Title Work done Results Future scope

5.

2011 H.
Storrle

Towards clone
detection in
UML domain
models [7]

Clone detection algorithm is
implemented as MQlone tool, a
plugin in Magic Draw UML CASE
tool which reports the clones to the
user. Steps of clone detection
approach: 1) A model is created
manually or by transformation. 2)
Built in facilities of the Magic Draw
UML CASE tool are used to export
the model into XMI file format. 3)
Prolog code is generated after
transformation of XMI file. 4) Next
the clone detection is based on
similarity and model matching.

Formal definition
of models, model
clones and
implemented
approach in the
MQlone tool have
been provided.
The clone
detection quality
and runtime of
algorithm were
validated
experimentally.

Future work
will focus on
areas such as:
first, MQlone
can be tuned by
large number of
parameter
settings that
have not been
fully explored.
Second, more
algorithms will
be explored.

6.

2011 J.R.
Cordy,
C.K.
Roy

The NiCad
Clone Detector
[8]

NiCad Clone detector involves three
stages: 1) Parsing: To extract all
fragments of given granularity input
sources are parsed. 2)
Normalization: Extracted fragments
can be normalized, filtered before
comparison. 3) Comparison: To
detect similar fragments, LCS
(Longest Common Subsequence) is
used to compare linewise extracted
and normalized fragments.

It provides output
results in both
XML and HTML
forms. NiCad is
new clone
detection method
that has been used
in detecting near-
miss clones with
high precision and
high recall.

To perform
comparison of
NiCad clone
detector with
other clone
detection tools.

7.

2010 Deissen
boeck.F
,
Humme
l.B,
Pfaehler
.M,
Schaetz.
B.

Model clone
detection in
practice [9]

An industrial case study for BMW
group has been presented that
provides an efficient clone detection
technique in model based quality
assurance. Model clone detection is
done in three steps: 1)
Preprocessing and Normalization 2)
Detection 3) Post processing. Model
quality Assessor tool allows to
execute the model clone detection
within an integrated environment
that is also used for visualizing
detection results.

Model Quality
Assessor tool is
provided that
eases the
evaluation of
detection results
and thereby helps
to make clone
detection a
standard
technique in
model based
quality assurance.

The detection
approach will
be extended to
other data flow
oriented forms
of models,
example: State
oriented models
like state charts
or state flow.

8.

2009 Nam H.
Pham,
Hoan
Anh
Nguyen,
TungTh
ang
Nguyen

Complete clone
detection in
Graph-based
Models [10]

 ModelCD, a novel clone detection
tool has been proposed for graph
based models. The core of
ModelCD is two clone detection
algorithms i.e. eScan and aScan.
Two algorithms detect clones
through three steps: generating,
grouping and filtering.

Empirical
evaluation on
large scale
Simulink systems
is shown that it is
able to handle
both exact and
approximate
clones.

In future, to
compare
usefulness of
this approach
with other tools.

A Review of Clone Detection in UML Models 31

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015

4. RESULTS
On the basis of literature, strengths and weakness of different techniques has been gathered in table 2.

Table 2. Review
 S. No. Approach for model Clone

detection
Advantages Disadvantages

 1.

Weight assignment method This method is used to identify the
clones with accuracy and rapidity.

This clone detection
technique does not execute
a graph based approach.

 2.

Clone detection using suffix
array

Suffix array is considered to be better
than suffix tree in terms of memory
space and access speed.

There is no functionality
added to the algorithm that
can rate the clones relevant
or non-relevant for better
maintenance.

 3.

Clone detection in behavioural
models using NiCad tool

Clones in reverse engineered
behavioural models from web
applications can be used to find
worrisome patterns such as security
violations.

This approach is not applied
to other kinds of UML
behavioural model
representations.

 4.

Model clone detection using
tree comparison

Key elements of UML diagrams are
stored in the form of a tree, therefore
irrelevant clones are not reported.

This algorithm is not
implemented on large
number of class diagrams as
well as other object oriented
diagrams.

 5.

Clone detection algorithm
implemented as MQlone tool, a
plugin in Magic Draw UML
CASE tool

This approach works well for clone
detection in small and medium sized
models.

This approach cannot be
applied on large and very
large models. This approach
has inaccuracy and low
degree of completeness in
clone detection.

 6.

NiCad Clone detector NiCad clone detector is a code clone
detection tool i.e. scalable and flexible.
It is used to detect Type-3 (Near-Miss)
model clones. NiCad is efficient in its
resource usage and on a standard
single processor can handle the largest
systems in 2GB of memory.

NiCad clone detection
stages such as parsing and
extraction are most
expensive stages.

 7.

Model clone detection in
practice using Model Quality
Assessor tool

This technique mainly focuses on
improvement of scalability and
relevancy.

This clone detection is not
applicable to process
oriented models for clone
detection.

 8.

 Clone detection in graph-based
models using ModelCD tool.

This tool is used to detect clones with
high degree of accuracy, scalability
and completeness.

This model clone detection
for Matlab/Simulink models
report many clones as
irrelevant.

This crux will be helpful to users/ readers to choose and apply clone detection technique according to particular need.

5. CONCLUSION AND FUTURE SCOPE

Clone detection is an active research area. Large adaptability
of model based development in software field is promoting
model based clone detection. In this paper, a survey on the
area of clone detection research is made, putting emphasis on

the types of clones used, their detection mechanism and
evaluation of the techniques. Different techniques have been
presented for model clone detection in class diagrams and
other models. Each methodology has its own advantages and
limitations. From the survey it has been observed that tree
comparison technique reports minimum irrelevant clones.

Balwinder Kaur, Er. Harpreet Kaur

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015

32

Clone detection using suffix array is considered to be better
than suffix tree in terms of memory space and access speed.
NiCad is a scalable and flexible clone detection tool to detect
type-3 clones. So we can conclude that finding clones from the
models will help the developer for better maintenance and
understandability of model because most of the developer
interacts with the systems through diagrams only.
In future, clone detection techniques will apply for detection
of clones in other UML diagrams such as sequence diagrams
and activity diagrams etc. Further, a lot of work need to be
done to detect type-3 and semantic clones.

6. REFERENCES

[1] S. Sarala, S. Mythili, “Efficient weight assignment method for

detection of clones in state flow diagrams,” International Journal
of Software Engineering Research & Practices, vol. 4, Issue 2,
October 2014.

[2] Harjot Kaur and Manpreet Kaur, “Detecting clones in class
diagrams using suffix array,” International Journal of
Engineering and Advanced Technology (IJEAT), ISSN: 2249-
8958, Vol. 3, Issue 4, April 2014.

[3] D. Rattan, R. Bhatia, M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, pp.
1165-1199, 2013.

[4] Antony.E.P., Alafi.M.H., Cordy.J.R., “An approach to clone
detection in behavioural models,” Queen’s University, Kingston,
Canada, AAC-WCRE, 2013.

[5] M.H. Alafi, J.R. Cordy, M. Stephan, T.R. Dean and A.
Stevenson, “Models are code too: Near –miss clone detection for
Simulink models,” IEEE, in ICSM, pp. 295-304, 2012.

[6] Rattan.D, Bhatia.R, and Singh.M, “Model clone detection based
on tree comparison,” India Conference (INDICON), IEEE,
ISBN: 978-1-4673-2270-6, pp. 1041-1046, Dec. 2012.

[7] H. Storrle, “Towards clone detection in UML domain models,”
Software and Systems Modeling, doi 10.1007/s10270-011-0217-
9, pp. 39, 2011.

[8] R. Cordy and C.K. Roy, “The NiCad clone detector,” in
Proceedings of the Tool Demo Track of the 19th International
Conference on Program Comprehension (ICPC 2011), IEEE,
Kingston, Canada, pp. 219-220, June 2011.

[9] Deissenboeck.F, Hummel.B, Pfaehler.M and Schaetz.B.,
“Model clone detection in practice,” IWSC’10, Cape Town,
South Africa, pp. 37-44, 2010.

[10] H. Storrle, “Towards clone detection in UML domain models,”
Proceedings of European Conference on Software Architecture
(ECSA’10), Copenhagen, Denmark, pp. 285-293, 2010.

[11] Nam H. Pham, Hoan Anh Nguyen, Tung Thang Nguyen, Tien
N. Nguyen, Jafar M. Al-Kofahi, “Complete and accurate clone
detection in Grap-based Models,” Proceedings of the IEEE 31st
International Conference on Software Engineering (ICSE 2009),
pp. 276-286, 2009.

[12] C.K. Roy, R. Koschke and J. R. Cordy, “Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach,” Science of Computer Programming, vol.
74, no. 7, pp. 470-495, 2009.

[13] Lin.H.J. and Peng.L.F., “Quick similarity measurement of
source code based on suffix array”, IEEE, International

Conference on Computatinal Intelligence and Security”, DOI
10.1109/CIS.2009.175, 2009.

[14] C.K. Roy, R. Koschke and J.R. Cordy, “A survey on software
clone detection research,” Technical Report 2007-541, Queen’s
University at Kingston Ontario, Canada, pp. 115, 2007.

[15] S. Bellon, E. Merlo, J. Krinke, G. Antoniol and R. Koschke,
“Comparison and evaluation of clone detection tools,” IEEE,
Transactions on Software Engineering, vol. 33, no. 9, pp. 577-
591, 2007.

[16] F. Deissenboeck, B. Hummel, E. Juergens, B. Schatz, S.
Wagner, S. Teuchert and J. F. Girard, “Clone detection in
automotive model based development,” Proceedings of 30th
International conference on Software Engineering, Leipzig,
Germany, pp. 603-612, 2008.

[17] Abdul.H.B., Puglisi.S.J., Smyth.W.F., Turpin.A. and
Jarjabek.S., “Efficient token based clone detection with flexible
tokenization,” ESEC/FSE’07, ACM, Cavtat Croatia, 2007.

[18] H. Liu, W. Shao, L. Zhang and Z. Ma, “Detecting duplications
in sequence diagrams based on suffix trees”, IEEE CS,
Proceedings of 13th Asia- Pacific Software Engineering
Conference (APSEC'06), Bangalore, India, pp. 269-276, 2006.

[19] Abdul.H.B. and Jarzabek.S., “ Detecting higher-level similarity
patterns in programs,” ESEC-FSE’05, ACM, Lisbon, Portugal,
2005.

[20] I.D. Baxter, L. Bier, M. Sant’Anna, L. Moura and A. Yahin,
“Clone detection using abstract syntax trees,” in ICSM’98, IEEE
Computer Society, pp. 368-377, 1998.

